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CIENT PERIODIQUE

Whole body fatty acids can originate from three different sources: food, de novo lipogenesis and bioconversion. 
Fatty acids generated de novo, as well as fatty acids derived from food can be bioconverted to longer-chain 
fatty acids with more carbon atoms and/or double bonds, by a series of steps of desaturation and elongation, 
or shortened by β-oxidation steps and recycled between peroxisomes and the endoplasmatic reticulum. 
Regulation of these steps involves desaturases (Δ9D, Δ6D, Δ5D) and elongases (Elovl2, Elovl5 and Elovl6), 
as well as different metabolites (glucose), hormones (insulin) and transcriptional factors (peroxisome 
proliferator-activated receptors α, PPARα; sterol response element-binding protein-1c, SREBP-1c; liver X 
receptor, LXR; carbohydrate-regulatory element binding protein, ChREBP; MAX-like factor X, MLX) and 
microRNA. Nutrition (substrate availability) and competition for rate-limiting enzymes for desaturation, 
as well as partitioning into oxidation could substantially contribute or even override other regulatory 
mechanisms.
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Metabolic diseases, such as diabetes, obesity or metabolic syndrome (MS), are characterized by changes in 
lipogenesis in different tissues. The investigation of liver lipogenesis during metabolic disorders in animal 
models is challenging due to the highly complex regulation of liver lipogenesis, as well as the diversity of 
animal species and strains used. An additional challenge is the diversity of nutritional and pharmacological 
interventions used to induce diabetes type 1 or 2 or MS.
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In the case of diabetes mellitus type 1 (DM1), the situation is relatively simple. Today, a large choice 
of rodent models is available for DM1, including those spontaneously developing the disease with and 
without autoimmunity (NOD and Ins2Akita, respectively), drug-induced (aloxan and streptozotocin), 
and genetically-modified animals [1]. The investigations of aloxan and streptozotocin induced DM1 
discovered decreased expression of Δ desaturases. Consequently, the most consistent changes in the fatty 
acid composition of different tissues in DM1 experimental rats include a decrease in palmitic acid [2-4], and 
a decrease in monounsaturated fatty acids (MUFA) [3,5]. Other important changes are not consistent and 
include a decrease in arachidonic acid (ARA), an increase in its precursors (linoleic acid, LA and dihomo-
gamma-linolenic acid, DGA), and an increase in docosahexaenoic acid (DHA) [6,7]. Additional variables, 
such as age [7] or dietary lipids [8], could further influence fatty acid profile in DM1.

In diabetes mellitus type 2 (DM2) or MS, the fatty acid profile of the organs is much more complex. 
Initial studies with glucose or fructose in the diet mostly showed the opposite influence on desaturases 
and consequently on the liver fatty acid composition, compared to DM1. The most consistent changes 
are an increase in desaturases and an increase in the content of oleic acid, and a decrease in the content of 
LA and DHA [3,5,6,9,10]. After introduction of high fat diets in experimental models, a difference was 
observed between high fat and high carbohydrate diets. In rodents fed high-fat diets the content of ARA 
increases, while LA and DHA decreases [11]. Comparison of high fat and high carbohydrate diets reveals 
that a high carbohydrate diet leads to a higher increase in SFA, PUFA and MUFA content and lipogenesis, 
while in high fat diets more PUFA are preserved [12]. Introduction of a high-fat low-streptozotocin model 
introduced additional variably into the investigation of liver lipogenesis. Using that model, Yao et al. (2015) 
found decreased desaturase expression along with increased liver DHA content, which resembles the results 
found in DM1 [13].
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Today, different rodent models are available to scientists for the investigation of lipogenesis in DM1, DM2 
and MS. These models give us an insight into the changes in liver fatty acid profile during the progression 
of these diseases. Considering the fact that the liver is the primary site of PUFA production for extrahepatic 
tissues, such as the brain, differences in the liver metabolism of important fatty acids (e.g. DHA) in DM1 
and DM2 or MS could have significant nutritional and clinical implications. Further investigations should 
focus on these differences in order to assess in which diseases and stages of diseases particular fatty acids 
should be supplemented.
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