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Warburg was the first to describe the effect of metabolism reprogramming in cancer cells [3,4]. It was 
hypothesised that mitochondrial dysfunction in cancer cells resulted in a shift towards glycolysis, even in 
the presence of oxygen in the tumour microenvironment, the so-called “aerobic glycolysis”. Throughout 
the years, aerobic glycolysis among cancer cells has been repeatedly confirmed; however the underlying 
pathophysiological mechanisms do not coincide with Warburg’s beliefs [5]. It has to be noted, though, 
that Warburg provided the basis for investigating cancer metabolism and his contribution remains widely 
appreciated [6].

Cancer cells are no longer considered as carrying mitochondrial defects [5]. Mitochondrial function is being 
reprogrammed in favor of glycolysis in order to provide important glycolytic intermediates to biosynthetic 
pathways resulting in macromolecules production, which is vital for cancer cell survival and proliferation [7].

In 2011, Hanahan and Weinberg presented the next generation of hallmarks of cancer, by providing an 
update of their initial review [1,2]. Deregulation of cellular energetics and evasion of immune destruction 
were proposed as emerging cancer hallmarks [2]. Currently, accumulating data support the reprogramming 
of energy metabolism as a cardinal event in carcinogenesis and sustainable cancer cell survival.

Interestingly, current evidence suggests that the activation of proto-oncogenes and the inactivation of tumor 
suppressor genes play a key role in deregulating cellular energetics [8]. The phosphatidylinositol-3-kinase
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Hypoxic conditions are common in the tumor microenvironment. Hypoxia mediates its effects primarily 
through the regulation of hypoxia-inducible factor-1 (HIF-1) [12], that in turn upregulates glucose 
transporters and glycolytic enzymes in order to maintain the redox homeostasis and sustain cancer cell 
survival [10,13]. α-ketoglutarate, an intermediate molecule in Krebs cycle, is one of the cosubstrates for HIF-α 
[14]. A deregulation of their interplay could skew the metabolic balance in favour of aerobic glycolysis and 
rapid cell proliferation, making it susceptible to both epigenetic alterations and genetic mutations that may 
promote carcinogenesis [15]. Mitochondrial autophagy is also important in this process, as it is mediated by 
HIF-1 and it may represent a switch between promoting or impeding cancer progression [16,17].

(PI3K)/Akt and the mammalian target of rapamycin (mTOR) pathway, which is upregulated in the majority 
of human carcinomas, promotes glucose uptake and glycolysis [5,9,10]. MYC activation is also implicated 
in mitochondrial function and glutamine utilisation as a carbon source [5]. Furthermore, loss of p53 tumor 
suppressor gene may promote glycolysis [11].

Furthermore, there is currently a vivid interest in the scientific community on the convergence of cancer 
metabolism with cancer immunology [18], which have been both described as emerging cancer hallmarks 
in 2011 [2]. It has been supported that metabolic disturbances favouring cell proliferation and acquisition of 
mutations in combination with deregulated immune surveillance are necessary for promoting carcinogenesis 
[18]. Tumour microenvironment plays a key role in this process [18]. Deregulation of several metabolic 
factors, such as prohibitin, mevalonate and tryptophan pathway, induces alterations in the immune responses 
and ultimately promotes cancer cell survival [19-21]. Such observations aim to provide the rationale for 
targeted therapies. Potential metabolic targets include lactic acid in cervical [22] and pancreatic cancer [23], 
arginine 1 in breast cancer [24] and Hodgkin lymphoma [25], nitric oxide synthetase (iNOS) in ovarian 
cancer [26] and the tryptophan pathway in glioblastoma [27-29].

From the bench to the bedside, the avid glucose uptake by cancer cells has provided the basis for positron 
emission tomography (PET) with a radiolabeled analogue of glucose (18F-fluorodeoxyglucose, FDG), that 
in combination with computed tomography (PET/CT scan) is currently a valuable technique for cancer 
diagnosis and disease monitoring [30].

In conclusion, deregulated cellular energetics is considered as an emerging cancer hallmark and metabolic 
reprogramming has been described in cancer cells. Beyond the mere alterations in metabolic indices, there is 
a vivid interplay between proto-oncogenes, tumour suppressor genes and metabolic effectors. Interestingly, 
the emerging field of cancer immunometabolism may provide a better understanding of the underlying 
pathophysiological mechanisms of carcinogenesis. Furthermore, the identification of novel metabolic 
immune checkpoints may provide the rationale for a new breakthrough in cancer therapeutics.
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