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CIENT PERIODIQUE

Ribosomal protein (RP) gene mutations, mostly are associated with inherited or acquired bone 
marrow failure; it is believed that RP to drive disease by slowing the rate of protein synthesis. 
Ribosomes, are responsible for protein synthesis; ribosome, consist of a small 40S subunit and a 
large 60S subunit. These subunits are composed of 4 RNA species and approximately 80 structurally 
distinct proteins. Size of RPL23 is 143 amino acids, and molecular mass of this protein is 1508 Da. 
The gene for encoding this protein is placed in chromosome 5q14.2 by HGNC, Entrez Gene and 
Ensemble. It is shown that PRS23 is responsible for development and many cancer diseases.

Abstract



Gazmend Temaj, et al. (2020). When Ribosomal Protein Go Bad-Mutation of Ribosomal Protein RPS23 
in Different Diseases. CPQ Cancer, 3(1), 01-07.

Gazmend Temaj, et al., CPQ Cancer (2020) 3:1 Page 2 of 7

Nro1 binds Rps23, and in this form Nro1 import Rps23 into the nucleus for assembly into small ribosomal 
subunit 40S. But low oxygen have affinity to inhibit Ofd1 hydroxylase activity, and in this form participate 
in stabilization complex, which is building by Ofd1-Rps23-Nro1. Ofd in vitro bind directly three other 
factors: Rps23, Nro1, and Sre1. Interestingly, the Rps23 expression it is shown to modulate Sre1 activity by 
changing the Rps23 substrate pool available to Ofd1.

Ribosomal protein RPS23 is part of small ribosomal subunit 40S. It is shown that RPS23 is responsible for 
many human disorders which cause different disease. This disorders are caused by participation of RPS23 in 
many biochemical reaction. 

The enzyme oxygenase it is shown to catalyze hydroxylation of small ribosomal protein RPS23, although 
this is much conserved in eukaryotes such as yeast, flies and human. This is demonstrated by Loenarz et al., 
2013 [2]. In basal eukaryotes it is shown, that RPS23 undergoes two hydroxylations; whereas in animals 
Loenarz et al., 2013 [2] observe only one hydroxylation. Hydroxylation lacking in ribosome of yeast cell, 
and stop codon readthrough is manifest up to ∼10-fold. Thus results from study by Loenarz et al 2013 [2] 
explain how oxygen-dependent modifications regulate translational accuracy, and suggest to modulating 
ribosomal accuracy for medical application.

2-oxoglutarate (2OG)-dependent oxygenase catalyze a range of important biological oxidations. Singleton et 
al 2014 [1] describe that 2OG and Fe (II)-dependent oxygenase domain-containing protein 1 (OGFOD1) 
is a protein hydroxylase that participate in modification of the small ribosomal subunit protein RPS23 at 
a conserved prolyl residue in the ribosome-decoding center; suppression or deletion of OGFOD1 also is 
shown to associate with the activation of translational stress pathways.

In study by Paolini et al., 2017 [4] de novo missense mutations in the RPS23 gene, are reported in two patients 
with microcephaly, hearing loss, and overlapping dysmorphic features. Experiments with primary cells show 
that hydroxylation of OGFAD1 participate in proline residue, and in this form results in blocking on 
polysome formation. It is predicted that other disrupt of pi-pi stacking interaction among two phenylalanine 
residues destabilized uS12/RPS23 and that was not tolerated in 40S subunit biogenesis [4].

Introduction

Two important factors such as prolyl-3, 4-dihydroxylase (Ofd1) and nuclear import adaptor (Nro1) it is 
shown to regulate the hypoxic response in fission yeast, this is shown by Clasen et al. 2017 [3] when is 
identify an extra-ribosomal function for uS12/Rps23 to regulate this system.

In drosophila melanogaster is identify the gene (sudestada1-sud1) which is responsible for normal growth 
[5]. The gene sud1 encodes a prolyl-hydroxylase and in this form participate in modification of small 
ribosomal protein 23 (RPS23). The gene Sud1 participate also not only in protein modification but induce 
apoptosis and increase autophagy also.
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The effect of bowel inflammation on housekeeping gene (HKG) remains unknown. Expression stability of 
15 (housekeeping gene) HKG such as gene ACTB, B2M, GAPDH, GUSB, HPRT1, IPO8, MRPL19, 
PGK1, PPIA, RPLP0, RPS23, SDHA, TBP, UBC, and YWHAZ in 166 bowel specimens (91 normal, 35 
cancerous, and 40 inflamed) was analyzed by Krzystek-Korpacka et al. 2014 [14] when they present the 
top-ranked housekeeping gene and it is shown, that RPS23, PPIA, and RPLP0 were top-ranked; other 
housekeeping gene which are analyzed by Krzystek-Korpacka et al., 2014 [14] such as IPO8, UBC and TBP 
were lowest-ranked across inflamed/cancerous/normal colonic tissues.

The results from the study by Zhang et al 2017 demonstrate that RPS23 together with TPT1 and small 
ribosomal protein (RPS13) was the most stably expressed reference gene [10]. 

Various small ribosomal proteins such as, RPS3, RPS5, RPS6, RPS16 and RPS23, were shown to 
downregulate abnormal sperm, in the study by Zhang et al., 2018 [13].

In cancer cells such as colorectal adenocarcinomas it is found that small ribosomal protein (RPS23) and 
large ribosomal protein (RPL35) are overexpressed in both stages: early and advanced stage [9].

Mutation of RPS23 is report to associate with hair pathology of a patient, including hypotonia, autism, extra 
teeth, elastic skin, and thin/brittle hair; when Alsop et al 2016 analyzed hair structure of a patient with a de 
novo disrupted ribosome [11].

Small ribosomal protein (RPS23) increase the weight of immune organs. This is result from study by Wang 
et al., 2013 [12]. Small ribosomal protein (RPS23) has antitumor activity in host cells.

Maltseva et al., 2013 [15] showed that that different genes, such as gene ACTB, RPS23, HUWE1, EEF1A1 
and SF3A1 proved to be least variable and in this form they are more efficient for research and clinical 
analysis of breast cancer. 

It shown by Wang et al., 2014 [6] that miR-542-3p suppressed ribosome biogenesis by downregulating a 
subset of small ribosomal protein 23 (RPS23), and with upregulation of large ribosomal protein 11 (RPL11) 
they influence in stabilization of p53. The 3’UTR in the RPS23 transcript contained a miR-542-3p binding 
site; this suggest that RPS23 is a direct target of miR-542-3p.

RPS23 and Cancer

In HCC (hepatocellular carcinoma) miR-490-5p is down-regulated and moreover, miR-490-5p might 
directly target small ribosomal protein (RPS23) together with SRC, SRP9, PDGFRB, and RPL28; and in 
this form play an important role in HCC [7].

Changing in gene expression occurred by different genes; among them is gene doxorubicin (DOX). In two 
cancer cell line such as HeLa and DOX-resistant KB-V1 is evaluated gene expression. This is shown by 
Drozd et al., 2016 [8]. It is shown that DOX treatment changed gene expression in both cell line and in this 
form induce sufficient of RPS23.
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Studies in yeast and bacteria revealed that mutations in RPS28 or RPS12 (RPS23 homologs in S. cerevisiae 
and E. coli respectively) provoke to increase stop codon read-through, while other mutations in the same 
proteins provoke reduced stop codon read-through [16-18].

In three programs such as BestKeeper, geNorm and NormFinder also are analyzed expression of this gene, 
RPS23 together with other genes, such as β-ACT, ArgK, EF1-α, GAPDH, RPL12, α-TUB, 18S and 28S 
in A. eugenii but under different conditions [20]. The results revealed that the stably of gene expression 
in A. eugenii varied depend of experimental condition during experiment: developmental stages of gene 
such as EF1-α, 18S and RPL12, small ribosomal protein 23 and large ribosomal protein in sex (RPS23 
and RPL12), low and higher temperature in different genes (GAPDH and α-TUB, α-TUB and RPS23), 
starvation (RPL12 and α-TUB), and dsRNA exposure (α-TUB and RPL12).

The importance of study by Kaur et al 2018 [21] stems from the fact that riverine buffaloes are major 
dairy species of Indian sub-continent and the information generated here will be of great interest to the 
investigators engaged in functional genomic studies of this important livestock species.

Jiang et al., 2016 [19] shown that RPS23 play pivotal role in normalization of RT-qPCR data yak mammary 
tissue during the lactation cycle. During the normalization it is shown collaboration of RPS23 with MRPS15 
and UXT.

geNorm, NormFinder and BestKeeper softwares, are three different algorithms which are used to evaluate 
the stability of 10 potential reference genes from different functional classes. The M-value given by geNorm 
it is shown to range from 0.9797 (RPS9 and UXT) to 1.7362 (RPS15). Ranke of gene from most stable 
to least stable are: UXT/RPS9> RPL4> RPS23> EEF1A1> ACTB> HMBS> GAPDH> B2M> RPS15. 
The analysis of software NormFinder ranked genes as below: UXT> RPS23> RPL4> RPS9> EEF1A1> 
HMBS> ACTB> β2M> GAPDH> RPS15. Based on standard deviation (SD) value and range of fold 
change expression, the software analysis of BestKeeper is: RPS9> RPS23/UXT> RPL4> GAPDH> 
EEF1A1> ACTB> HMBS> β2M> RPS15. In this study it is shown that RPS23, RPS9, RPL4 and UXT 
genes to be the most stable [21].

Cardiac allograft rejection (AR) can cause graft dysfunction and even mortality, ribosomal proteins show 
that are good indicator for diagnosis of this diseases. Ribosomal protein from large subunits such as RPL7, 
RPL11, and ribosomal protein from small subunits such as RPS23, RPS25, were good biomarkers in 
peripheral blood for monitoring cardiac AR. The up-regulation of ribosomal protein from large subunit 
RPL7 and RPL11, and from small subunits RPS25, RPS23 might promote the translation of AR-related 
cytokines. This is shown Shen and Gong 2015 [22].

Stability of Gene RPS23

The study from Kapila et al., 2013 [23] is done to determine the panel genes in heat-stressed buffalo mammary 
epithelial cells (MECs), small ribosomal protein 23 (RPS23) together with EEF1A1 and RPL4 are shown 
to be more stable genes for normalization of gene expression in heat -stressed buffalo MEC.
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It is shown the gene down-regulation in translation including ribosomal proteins from large and small 
subunits such as our candidate small ribosomal protein (RPL13A, RPL22, RPS23, RPL13 and RPL10A), 
that could be used like a good biomarkers for future experiments [24].

In the study by Kapila et al., 2013 [23], is used reverse transcription-polymerase chain reaction (RT-PCR) 
to amplify the cDNA of RPS23 gene from skeleton muscle of giant panda, based on relative information 
regarding the RPS23 gene of the designed primers of some mammals, such as Homo sapiens, Bos Taurus, 
Felis catus, Mus musculus and Rattus norvegicus. The protein sequence also is analyzed, and compared with 
those of human and other animals reported.

Conclusion

The so-called Ribosomal Oxygenases (ROXs) (a subfamily of 2OG dependent dioxygenases), has been found 
to modulate protein synthesis through the hydroxylation of ribosomal proteins and tRNAs [25-27]. Feng et 
al. 2014 [28] recently report that only optimal translation termination depends on the hydroxylation of the 
termination factor eRF1 by the 2OG-dependent dioxygenase Jmjd4. These works highlight the importance 
of 2OG dependent dioxygenases in protein synthesis regulation. RPS23 is a good immunological biomarker 
and that is shown in different diseases. In many cancer disease is shown that RPS23 is overexpressed, and we 
can concluded, RPS23 is good indicator for adenocarcinomas, hapotecellular cancers.
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