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CIENT PERIODIQUE

Cancer treatment has evolved dramatically over the past decade owing to a better understanding 
of tumor cell biology and advances in tumor tissue genotyping (TTG). As more targetable genetic 
mutations are discovered, TTG has become decision-altering in patient management, particularly 
for cancers with few available traditional treatment options. Moreover, the increasing evidence 
demonstrating improved oncological outcomes and prognosis with early detection of cancer has 
made the search for new tumor biomarkers with high sensitivity and specificity an area of particular 
interest within cancer research.
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Introduction

Mechanism of ctDNA Shedding

The National Cancer Institute defined biopsy as “the removal of cells or tissues to be examined by a pathologist” 
[1]. For decades, the identification of specific cell types through tumor tissue sampling (i.e. solid biopsy) has 
been the mainstay in the diagnosis of malignant tumors. While histopathological assessment of solid tissue 
biopsies was initially done by a subjective analysis of microscopic cell morphology, the introduction of more 
advanced staining techniques such as immunohistochemistry significantly improved diagnostic accuracy 
while reducing interpersonal variability. More recently, a better understanding of tumor cell molecular 
changes has raised concerns regarding the reliability of solid biopsies’ results. In particular, questions arose 
as to whether an obtained solid biopsy was truly representative of the entire tumor, and whether re-biopsy 
of tumors with newly-acquired treatment resistance would alter the management strategy. To address these 
concerns, substantial efforts were made to identify new tumor specific biological markers that would help 
in the early detection of precancerous lesions and recurrent tumors. Despite the growing evidence that early 
detection of malignant tumors may improve patients’ survival, currently available biomarkers still lack the 
desirable diagnostic accuracy [2].

The term “liquid biopsy” refers to the ability to detect circulating tumor cells (CTCs) and genetic 
material (e.g. DNA, RNA, microRNA and exosomes) in the bloodstream [5]. In cancer patients, 
circulating tumor DNA (ctDNA) has been detected in the blood with tumors as small as 50 
million cells [6] and has therefore generated excitement for the profound implications for earlier 
cancer detection. Despite these great potentials, the application of ctDNA in routine practice is 
currently met by several challenges. Particularly, as ctDNA exists in minute amounts in blood, the 
ability to differentiate ctDNA from cfDNA that exists in larger amounts can be challenging [4,7].

To maximize the benefit of available treatment options, primary and recurrent tumors should be 
biopsied to determine newly developed genetic mutations, which may contribute to tumor clonal 
selection and resistance to therapy.

Circulating tumor DNA (ctDNA), has been extensively studied over the past few years with 
promising implications for early tumor detection and management. In this review we discuss the 
role of ctDNA in cancer management.

The presence of free DNA fragments in the circulation was first reported by the French scientists 
Mandel and Metais in 1948 [3]. However, the impact of such a discovery on cancer management 
was not thoroughly investigated until recently, owing to the revolutionary advances in the DNA 
detection techniques. Numerous studies have since shown that circulating free DNA (cfDNA) 
could be detected in blood samples from any individual with varying levels. Particularly, pregnancy, 
inflammation, necrosis, and malignancy were associated with higher detectability of cfDNA [4-8].

Several hypotheses explaining how tumor DNA enters the circulation have been described. The most 
plausible theory is that ctDNA is released from necrotic and apoptotic tumor cells [8]. The increase in cell
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Figure 1

ctDNA has the potential to revolutionize early cancer detection compared to the currently used diagnostic 
modalities (i.e. imaging and biomarkers). However, the average level of cancer ctDNA in the blood is less 
than 1% of the total cfDNA [4], and thus the ability to differentiate ctDNA from other cfDNA is a 
major challenge. ctDNA can be differentiated from cfDNA by the presence of somatic mutations that are 
identical to those in the primary tumor. Commonly detected mutations include single base substitutions, 
deletions and insertions (e.g. EGFR and KRAS), rearrangements (e.g. EML4-ALK), amplifications (e.g. 
HER2andMET), and aneuploidies [4,7]. Although on average 80% of solid tumors have mutant genes [15], 
mutations can only be detected in 0.02% to 0.1% of all DNA assayed as reported by Schwarzenbach et al

ctDNA Versus cfDNA

turnover that accompanies tumor growth overwhelms the ability of phagocytes to clear cellular debris thus 
permitting the release of cfDNA in the circulation. Another hypothesis suggests that CTCs by themselves 
may be a source of ctDNA [9].

Virtosomes, a less investigated source of nucleic acid in blood, are DNA-RNA-lipoprotein complexes released 
from living cells in a more highly regulated manner compared to other forms of cfDNA. Their release is energy 
dependent and the extracellular environment greatly influences its synthesis and release. Being secreted in 
lipoprotein complexes, its nucleic acid can only be detected if isolated from these complexes, which can be 
more challenging and costlier. This might imply that nucleic acids sequestered within virtosomes may escape 
detection by commercially available cfDNA detection kits [10-14]. See figure 1.
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[16]. Moreover, due to ctDNA high specificity, the fraction of cfDNA that is captured as ctDNA is reported 
to be as low as 0.01% [17].

Researchers have primarily relied on one of two methods for detecting mutations in ctDNA. The first 
method is to identify mutations in the primary tumor sample and then quantify these mutations in the 
cfDNA [4]. The other method is to blindly assess cfDNA extracted from plasma for common mutations of 
significance, independent of the primary tumor mutations [18]. The quantified mutation is then represented 
as mutant fragments per mililiter [7].

Standardization of pre-analytical steps for blood handling may have a huge impact on optimization of the 
analysis and ctDNA mutation detection [19]. Qin et al experimented using specialized collection tubes 
(Cell-Free RNA BCT™s) to reduce DNA degradation by nucleases and contamination by white blood 
cells [20].

Digital polymerase chain reaction (PCR) and beads, emulsion, amplification, and magnetics (BEAMing) 
[21] or pyrophosphorolysis-activated polymerization (PAP) [22] are next-generation sequencing (NGS) 
techniques that can identify rare mutant variants in complex mixtures of DNA [23]. They also have the 
ability of detecting single point mutation, amplifications, rearrangements, and aneuploidy4. This is because 
they have the necessary bandwidth to detect mutations circulating at low allele frequencies [24].

There are two methods to detect tumor specific rearrangements and chromosomal copy number changes (e.g. 
amplifications). The first is personalized analysis of rearranged ends (PARE) which uses these alterations for 
development of tumor biomarkers. The second is digital karyotyping which is a genome-wide method for 
detection of copy number alterations associated with such chromosomal changes with sensitivity lower than 
0.001%. [25,26]. Both approaches can be used in a blind fashion to detect tumor specific rearrangements 
and amplifications from ctDNA without analyzing the primary tumor [27].

Diehl et al, conducted two studies using a BEAMing technique to compare mutations between the primary 
tumor and ctDNA of colon cancer patients undergoing different modality treatment. They reported that 
mutations found in primary tumors were consistent with those found in ctDNA and that the sensitivity 
for stage IV disease was 100.0% [4,28]. But the sensitivity of these techniques still needs improvement for 
screening and early detection because a ctDNA fraction at or below 0.01% is interpreted as a negative value 
due to the DNA polymerase error rate [4,29]. This has to be addressed in future techniques utilizing NGS 
if ctDNA is to be routinely used.

Techniques for ctDNA Detection

In another study, Chong et al evaluated the feasibility of utilizing a targeted DNA sequencing approach 
with the Ion PGM and AmpliSeq Cancer Panel to detect mutations in 50 cancer-related genes in matched 
plasma ctDNA and tumor DNA samples from 58 early-stage NSCLC patients. The team reported 89.7% 
quantifiable cfDNA and 60.3% ctDNA with 50.4% concordance between tumor DNA and ctDNA, 
sensitivity of 53.8% and specificity of 47.3% [30]. These results are far superior to other commonly used 
tumor biomarkers.
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Another issue, with solid biopsy acquisition is the number of tumor cells obtained and whether it represents 
the whole cell population or missed sub clones from tumor cells that can tamper with TG results and 
consequently treatment options. This problem is more evident in advanced tumors which exhibit more 
heterogeneity [37]. PIK3CA mutations in early stage NSCLC were reported to be four fold in ctDNA 
compared to tumor DNA, while TP53 and KRAS mutations were found in almost equal proportions [30], 
emphasizing that ctDNA analysis can give a generalized overview of tumor genome compared to solid 
biopsy. Moreover, methods used to preserve the biopsy have been questioned due to their potential to affect 
sequencing accuracy as reported by Luis et al, 2014 [7].

Despite their promising results, ctDNA detection techniques like Sanger sequencing have their limitations, 
especially in early stage cancers, as these approaches can be used only in patients with heavy tumor burden 
[7]. Therefore, these standard approaches were reported to have inferior results compared to other biomarkers 
like circulating tumor cells [31].

Diagnostic imaging methods that are currently used in routine practice such as mammography in breast 
cancer and low dose CT in lung cancer almost always have the same shortcomings. One shortcoming 
is the subjective and non-specific criteria used to distinguish malignant from benign lesions. Of course, 
these modalities also subject patients to radiation exposure. Patients may be further exposed to subsequent 
radiation in instances where a borderline a ‘suspicious’ lesion requires frequent imaging. Such difficulties 
are more prominent with smaller lesions [32]. Early stage lung cancer (stage IA) has a 73% 5-year survival 
rate compared to 24% for stage IIIA. Since only 30% of lung cancers are diagnosed at an early stage [33], 
ctDNA holds a promise for better outcomes [34].

Role of ctDNA in Screening and Diagnosis of Cancer

Using blood biomarkers has even more unreliable results. Carcinoembryonic antigen (CEA), carbohydrate 
antigen 19-9 (CA19-9), carbohydrate antigen (CA125), cytokeratin 19 fragment (CYFRA21-1), and 
neuron-specific enolase (NSE) are serum biomarkers that have been used for decades in screening and 
follow up of cancer patients. But these markers are unreliable as other pathologies can cause an increases in 
their serum levels [32,35].

Currently, diagnosis of most cancers depends solely on a solid biopsy. However, a solid biopsy can be an 
inconvenient choice for multiple reasons including the relatively longer time needed to obtain and process 
the specimen as well as the financial cost associated with it. Moreover, biopsies are invasive and pose a risk 
for complications. According to MD Anderson Cancer Center, adverse event were reported in 17.1% and 
1.6% of thoracic and abdominopelvic biopsies, respectively [36].

Inaccessibility to a tumor was a major concern as with central nervous system (CNS) tumors. There is a 
possibility of cancer cell dissemination and seeding following standard biopsy procedures. However, CNS 
tumor-associated mutations can be detected in both the plasma and cerebral spinal fluid of the patients with 
primary CNS lymphoma [38]. All of these factors have contributed to scientists’ enthusiasm of developing 
ctDNA for use in clinical practice. ctDNA can be found in blood of patients with tumors as small as 50 
million cells [6] and, it represents a non-contaminated, fresh source of tumor DNA. Also, ctDNA detection
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Evaluation of the tumors’ mutational changes that occur with treatment, progression, and recurrence are 
crucial in cancer management. We can see many studies published over the past decades lacking in reporting 
the changes in tumor environment that resulted in therapy resisitance [40,41]. Re-biopsying solid tumors 
may be inconvenient, especially for patients with long treatment courses. However, detecting ctDNA is 
considered to be minimally invasive and more rapid. Also, it can be assessed at any time in the disease course 
instead of relying on one time point.

The Role of ctDNA in Cancer Management and Prognosis

has very high sensitivity in estimating tumor burden. Even with stage IV disease the level of ctDNA varied 
with the level of metastases showing less detection of ctDNA fragments with oligo-metastatic disease [28]. 
In a group of 52 NSCLC patients, cfDNA concentration was found to be highly reflective of tumor burden 
as the concentration of cfDNA for stage II patients was 14.28ng/ml compared to 4.57ng/ml for stage I 
tumors (p=0.050) [30]. The wide variance in the level of cfDNA can be used to predict tumor burden in 
patients but these results needs to be validated in large multicenter randomized trials.

Screening and early detection may be complicated by the fact that a ctDNA fraction at or below 0.01% is 
interpreted as a negative value due to DNA polymerase error rate. However, other methods that can serve 
as good screening tools. For instance, the detection of ctDNA methylation has been previously reported to 
reflect same levels of primary tumor methylation. Although this method lacks specificity compared to the 
detection of genomic alterations, it is fairly sensitive in earlier disease changes so that it can be used as a 
good screening tool [39].

Perhaps one of the most important applications of ctDNA in clinical practice is for surveillance of newly 
emerging resistance to targeted agents. This can spare patients from numerous drug side effects and ineffective 
treatment modalities. Imitinib resistance has been well studied in chronic myeloid leukemia patients with 
documented Philadelphia positive chromosome who initially responded to the drug. The resistance was 
attributed to acquired mutations in the ABL kinase domain [44]. In lung cancer, there is 50% resistance 
to gefitinib or erlotinib due to emergence of EGFRT790M variants [45,46]. In this case the cause for 
resistance to EGFR inhibitors was determined by obtaining biopsies from the tumor but the same results 
can be obtained by analysis of the ctDNA obtained from the patients [47]. KRAS mutations or MET 
amplification were attribute to cetuximab and panitumumab resistance48. Misale et al, 2012, were able to 
detect emergent KRAS mutation and subsequent anti-EGFR resistance months before imaging studies

In scenarios where a patient has been treated for a malignancy and is now under follow up or having a stable 
disease with or without treatment, the oncologist is often faced with the problem that most malignancies do 
not have a biomarker that is sensitive, specific, and detectable in the blood for long durations18. Commonly 
used methods of surveillance for early recurrences are computerized tomography (CT) and [18] fluoro-
2-deoxyglucose positron emission tomography (PET) scans. Although these methods are considered the 
standard of care, they fail to provide significant benefit to patient survival [42]. ctDNA can potentially 
overcome this as it is identified by tumor specific mutations and has shorter half-life (about 2 hours) thus 
reflecting the current status of disease as accurately as possible [4,43]. Subsequently, it can be used to predict 
responses and progression early in the course of therapy.
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In 85% of diffuse large B-cell lymphoma (DLBCL) cases clonal VDJ sequences are successfully determined 
in baseline tumor biopsy [50]. Though targeted mutational panels for ctDNA in DLBCL are now being 
developed, a baseline biopsy is still needed to establish the origin of the tumor [24]. However, pretreatment 
biopsy quality still remains an issue for ctDNA utilization in DLBCL as a biomarker. Similar to solid 
tumors, spatial and temporal heterogenicity are concerning in DLBCL. DLBCL show continuous 
mutational evolvement over time especially with treatment selection [51]. This is more evident in recurrent 
disease which often exhibits multiple genetically distinct sub clones. Serial ctDNA analysis for mutation 
allele frequency can reveal newly evolving dominant clones resulting in its potential treatment implications 
[45,52,53]. This observation precedes CT detection of recurrences by months [50]. Kurtz et al., conducted 
a study on 75 patients with DLBCL demonstrating that monitoring cell-free ctDNA of VDJ in patients’ 
plasma was more effective than monitoring circulating cells with the same assay [54].

In these studies, it is not clear to us if the practice of giving adjuvant anticancer agents to ctDNA positive 
subjects actually affects the outcomes. This in itself raises many questions that must be addressed in future 
trials, including but not limited to the effectiveness of adjuvant treatment in both ctDNA positive and 
negative subjects and whether we can eliminate adjuvant therapy in ctDNA negative subjects sparing them 
from drug toxicity and reducing care costs. Another subject if these adjuvant agents do not have the required 
impact on outcome, what is the future approach we need to adopt to find druggable targets and whether 
ctDNA can aid in identifying any.

were able to detect treatment failure [48]. Accordingly, ctDNA analysis before, during and after the course of 
treatment offers a continuous and dynamic view on the tumor genotype. This can surpass current approaches 
as it can be employed in tailoring future combination anticancer therapy that limits expansion of resistant 
sub-clones of cancer cells.

Diehl et al conducted a study on a group of 20 early stage colorectal cancer patients underwent surgical 
resection of the tumor for curative intent and positive mutations were determined in the primary tumor 
of each patient. Post-operative ctDNA was quantified after surgery for each patient. This was followed by 
several follow ups for up to 5 years. Sixteen patients with detectable levels ctDNA experienced recurrences 
with one exception. It is worth mentioning that the four patients that had undetectable ctDNA in their 
first follow up visit experienced no recurrences. First follow up visit was set 13 to 56 days post-surgery 
which makes ctDNA an early marker that can offer more insight for decision making in adjuvant therapy 
treatment. Several studies have been conducted in that context, all augmenting the hypothesis that ctDNA 
can be used as successful marker for minimal residual disease [4,49].

Discussion

Circulating tumor DNA holds the promise of improving patient care. It has proved to be a highly specific 
biomarker with clear advantages over currently used biomarkers and imaging modalities. Although ctDNA 
lacks the desired sensitivity when used as marker for smaller tumors, it can still be used as a tool to guide 
management of late stage cancers where sensitivity is less of an issue. ctDNA utilization may replace 
solid invasive biopsies, since the higher tumor burden will allow enough ctDNA to be monitored in the 
circulation and the systemic release from all tumor sites will provide better view of molecular heterogeneity, 
thus, improving combination therapy tailoring for the patients. ctDNA may also allow for the detection of 
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